
The Computation and Representation of Address
Ranges

With an Introduction to the Python justbytes Library

Anne Mulhern

Red Hat, Inc.

November 29, 2017



Audience
Programmers who write code that must compute with and represent address ranges.

If you have never needed to discover free space on a device. . . then
this talk is probably not for you.
If you have never written code to display or calculate the size of a
device. . . then the second part of the talk is not for you.



Expectations
What this talk will include.

A little bit of personal experience.
Some math.
Some opinion.



Introduction
The Topic

What is this talk about?



The Domain
Allocating space on devices.

Partitions
Caches



Not the Domain
Where this is not an issue.

Bandwidth
Sales



Not the Domain
When it is just a question of the amount being moved.



The Domain
Allocating address regions is a layout problem.



Conceptual View of Memory
Linear arrangement of slots.



Real Example in the Domain (I)
lsblk1

lsblk –ascii output

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8 :0 0 931 .5G 0 d i s k
|− sda1 8 :1 0 500M 0 pa r t / boot
|− sda2 8 :2 0 15 .7G 0 pa r t [SWAP]
|− sda3 8 :3 0 50G 0 pa r t /
|− sda4 8 :4 0 1K 0 pa r t
‘− sda5 8 :5 0 865 .3G 0 pa r t /home
sdb 8 :16 1 7 .3G 0 d i s k / run /media/mulhern /12CE−4D83
s r 0 11 :0 1 1024M 0 rom

1lsblk from util-linux 2.28



Real Example in the Domain (II)
blivet-gui 2

2blivet-gui 1.0.7



Some Final Words (I)
Last thoughts on amounts.

Dealing with amounts is hard 3.

3“Numerical Computing with IEEE Floating Point Arithmetic” by Michael L. Overton
but also “The End of Error: Unum Computing” by John L. Gustafson.



Some Final Words (II)
Use of SI units in marketing.

Comparing apples with slightly larger apples is a marketing trick. You can
say you have more apples if you have smaller apples, but does your
customer really get more applesauce?



Confession
This is a hard problem?!

Until I started working on software supporting block devices I would not
have thought that this was a difficult subject. But it is.



Nomenclature
For purposes of discussion...

Range The word I use when I mean the size of an allocated
partition, or of my computer’s RAM, or the block size on a
disk.



Topics
Problems to cover.

Computation doing arithmetic with address range
Display communicating address range values to a human reader



Display
Showing values to a human reader.

This is not a discussion of machine readable output.



Display
Showing values to a human reader.
It is the business of the client to determine the appearance of the display;
the library should return a structure representing a value to display to the
client. How the structure is determined should be configurable4.

.
4justbytes-gui (https://pypi.python.org/pypi/justbytes-gui/)is a simple

library for experimenting with the existing display options in the justbytes library.

https://pypi.python.org/pypi/justbytes-gui/)


Display Structure
Relevant information about the display value.

Display Value (D)
I Sign
I Integer Part
I Non-Repeating Fractional Part
I Repeating Fractional Part
I Base

Relation of D to actual value (V) in units (U)
Units (U)



Display Structure Examples
Default choices for the display value for 32GiB.

Configuration Value Structure Value
Base 10 Sign +
IEC True Integer Part [3, 2]

Exact Value False Non-Repeating Fractional Part []
Max Digits after Radix 2 Repeating Fractional Part []

Bounding Factor 1 Base 10
Rounding Method half 0 Relation =

Unit None Unit GiB



Display Structure Examples
Consequences of choice of SI units for display of 32GiB.

Configuration Value Structure Value
Base 10 Sign +
IEC False Integer Part [3, 4]

Exact Value False Non-Repeating Fractional Part [3, 6]
Max Digits after Radix 2 Repeating Fractional Part []

Bounding Factor 1 Base 10
Rounding Method half 0 Relation >

Unit None Unit GB



Display Structure Examples
Consequences of some choices for display of 32GiB.

Configuration Value Structure Value
Base 1000 Sign +
IEC False Integer Part [34, 359]

Exact Value True Non-Repeating [738,368]
Max Digits after Radix 2 Repeating []

Bounding Factor 1 Base 1000
Rounding Method half 0 Relation =

Unit None Unit MB



Value Configuration
justbytes’ defaults for the getStringInfo() method.

The computation of the display value is configurable, because it is not
clear that there is just one best solution.

Value Configuration Value
Base 10
IEC True

Exact Value False
Max Digits after Radix 2

Bounding Factor 1
Rounding Method half 0

Unit None

Given IEC units, I would prefer base 1024. 32GiB +512B is “> 32.00
GiB” with defaults; with base 1024 it is “32.0~0~512”, i.e., precisely 32
GiB, 0 MiB, 0 KiB and 512 B.



Display Configuration
justbytes’ defaults for the __str__ method.

The display choices are configurable, because it is not clear that there is
just one best solution.

Display Configuration Value
Show Base Prefix False

Show Base Subscript False
Digits Separator ~

Use Letters for Digits True
Capitalize Digit Letters False
Strip Trailing Zeros False

Strip Trailing Zeros if Exact False
Strip Trailing Zeros if Exact Whole Number True
Show Relation of Display Value to Actual True

There is a lot more information in “> 1.00 TiB” than there is in “1.00
TiB”.



Always Prefer IEC to SI Units
IEC units better reflect the structure of memory5.

The structure of memory and the structure of addresses are based on
powers of 2.

5Would 28have been better than 210? Probably.



Display
Summary6.

IEC units are always preferable to SI units.
There is no single obvious best choice for certain display options.
IEC units are most informative when coupled with base 1024, but
that might be a hard sell.
Showing relation of displayed value to actual value is a good idea.
The client code decides the appearance, but justbytes decides the
value of the display representation based on configuration options.

6For technical reasons I ended up writing a separate library, justbases, to handle
the computation of the representation of the numeric value; it has a GUI as well:
https://pypi.python.org/pypi/justbases-gui/0.1.0.

https://pypi.python.org/pypi/justbases-gui/0.1.0


Computation
Computing with address ranges.



Computation
Rules for arithmetic operations.

1 Types are always correct.
2 Results are always exact.
3 Operands are never float or Decimal.
4 Results of computations never yield ranges to any power but 1.



Types are Always Correct
The usual rules of high-school arithmetic are strictly followed8.

Just as 1gallon+π is meaningless, so is 32GiB+64.7

Just as 1gallon
2 is 1

2 gallon, so 32GiB
2 is 16GiB.

Operations not allowed by these rules are called nonsensical.

7Some idiosyncracies of the Python libraries make it attractive to be able to add
numbers to ranges, but this is not really a good idea. See http:
//pythonhosted.org/justbytes/tutorial.html#using-the-additive-identity.

8The formal type rules are stated in the justbytes comments for the various
operations.

http://pythonhosted.org/justbytes/tutorial.html#using-the-additive-identity
http://pythonhosted.org/justbytes/tutorial.html#using-the-additive-identity


Results are Always Exact
There is no implicit rounding.

This means that 1
332GiB = 102

3 GiB which is 114532461222
3 B. The sole

motivation is so that the ordinary rules of arithmetic are preserved, i.e.,
associativity, distributivity, and so forth hold when computing with ranges.
The sole drawback is that if a whole number of bytes is sought for the
result, as is typical, the result must be explicitly rounded.



Operands are Never float or Decimal
Because most programmers do not have a good understanding of these types.

They tend to forget all sorts of things, like:
Floating point numbers do not obey the usual laws of arithmetic.
0.3 6= 3

10 .
9

There are a very large number of pairs of floats such that x 6= y but
x+y

2 ∈ {x ,y}.
Most of the problems with floats are true of Decimals at their
precision limit10.

9It’s actually 5404319552844595
18014398509481984 .10I think that the best use of Decimal is probably with decimal values with strict rules

for rounding, like decimal currency.



Results of Computations Never Yield Ranges to any Power
but 1.
No operation is allowed that would result in a Range with units that could not reasonably
be used as a partition size.

Nonsensical: nR ,n+R, etc.
Forbidden: Rn, RR
Permitted: R +R, nR, R/R, R < R, R%R, etc.



Implementation
The internal representation of a Range is as a fractional quantity of bytes.

Given the restriction of Range result powers to 1, fractions are all that are
necessary to achieve exact results, i.e., there is no requirement for
symbolic computing.



Caveat
Something to watch out for.

A simple example.
The fraction 111

11112121has 13668 digits in the repeating part of its decimal
representation. There is a noticeable delay before the value is correctly
calculated.

Avoid requesting unbounded precision when displaying a range. This can
result in a very time-consuming computation as the number of repeating
digits is bounded by the magnitude of the denominator in the equivalent
fraction.



Usage Example
pydevDAG with defaults

lsdev output

NAME DEVTYPE MAJOR SIZE
/dev/ sdb d i s k 8 < 7.27 GiB
/dev/ s r 0 d i s k 11 < 1024.00 MiB
0 xdae3640bc5005000 None None None
‘−/dev/ sda d i s k 8 > 931.51 GiB

|−/dev/ sda1 p a r t i t i o n 8 500 MiB
|−/dev/ sda2 p a r t i t i o n 8 < 15.70 GiB
|−/dev/ sda3 p a r t i t i o n 8 50 GiB
|−/dev/ sda4 p a r t i t i o n 8 1 KiB
‘−/dev/ sda5 p a r t i t i o n 8 < 865.33 GiB

Note how the relation of the displayed to the actual value is made clear by
the < and > symbols.



Usage Example
pydevDAG with base 1024

lsdev output

NAME DEVTYPE MAJOR SIZE
/dev/ sdb d i s k 8 7.273~704 GiB
/dev/ s r 0 d i s k 11 1023.1023~512 MiB
0 xdae3640bc5005000 None None None
‘−/dev/ sda d i s k 8 931.525~728 GiB

|−/dev/ sda1 p a r t i t i o n 8 500 MiB
|−/dev/ sda2 p a r t i t i o n 8 15.712~0 GiB
|−/dev/ sda3 p a r t i t i o n 8 50 GiB
|−/dev/ sda4 p a r t i t i o n 8 1 KiB
‘−/dev/ sda5 p a r t i t i o n 8 865.335~0 GiB

Note that all values are exact.



Try It Out
Packages available.

justbytes is available in Fedora as python{2,3}-justbytes and from
Pypi via pip.
justbytes tutorial available at
http://pythonhosted.org/justbytes/tutorial.html#.
justbytes-gui is available only on Pypi and expected to remain so.

http://pythonhosted.org/justbytes/tutorial.html#


What I Haven’t Talked About
Major things I haven’t solved.

Input of address ranges.
Computing with address ranges and other units.



Input of Address Ranges (I)
Getting an address range non-programatically.

I haven’t really solved this problem to my satisfaction; this is why
justbytes-gui is just a library and not also an application.



Input of Address Ranges (II)
Some thoughts.

Best to avoid it altogether, wherever possible.
In many practical situations, it is better to express a range as a
fraction of some related quantity, i.e., not as an absolute value.
In a GUI, it is best to limit the amount of free-form text the user can
enter. Certainly, choice of units should be handled by a widget.
In a CLI or configuration file, there might be benefit to separating the
numeric part from the units.
Textual representations specific to floating point, e.g., 1e32, should
be disallowed11.
Numbers with decimal points, e.g., 0.2, should be given their literal
meaning, i.e., 1

5 in this case, rather than their floating point
interpretation, i.e., 3602879701896397

18014398509481984 .

11That they are derived from scientific notation is not a justification for allowing them.



Computing with Address Ranges and Other Units (I)
The only types of arguments to Range operations are numerical types or Range objects.

There are perfectly good Python libraries12 for computing with units and
verifying dimensionality, but they are all for physical quantities, i.e. not the
domain. But it is generally the case that computations with address
ranges are not actually unitless. With a more complete library,
dimensionality can be checked.

Example.
The sysfs size attribute for block devices is the number of sectors in the
device. Converting this value to a range requires multiplying the size by
512, the number of bytes in the sector and converting the result. Better to
use the actual units, like s blocks512bytes

block = 512s bytes.

12Pint: https://pypi.python.org/pypi/Pint, etc.

https://pypi.python.org/pypi/Pint


Computing with Address Ranges and Other Units (II)
Designing a library to satisfy this problem is a large undertaking with limited reward.

The design of the library is not obvious.
Such a library would help to find bugs, but it would require
considerable investment to use properly.



Thanks
Any questions?


